
Smart Contract Audit Report
for

MaxiDao

Version 0.1

Trustlook Blockchain Labs

Email: bd@trustlook.com

Project Overview

Project Name MaxiDao

Contract codebase N/A

Platform Ethereum

Language Solidity

Submission Time 2021.08.27

Report Overview

Report ID TBL_20210827_00

Version 0.1

Reviewer Trustlook Blockchain Labs

Starting Time 2021.08.27

Finished Time 2021.08.29

@ Copyright 2021 Trustlook - All rights reserved

Disclaimer

Trustlook audit reports do not provide any warranties or guarantees on the
vulnerability-free nature of the given smart contracts, nor do they provide any indication
of legal compliance. The Trustlook audit process is aiming to reduce the high level risks
possibly implemented in the smart contracts before the issuance of audit reports.
Trustlook audit reports can be used to improve the code quality of smart contracts and
are not able to detect any security issues of smart contracts that will occur in the future.
Trustlook audit reports should not be considered as financial investment advice.

@ Copyright 2021 Trustlook - All rights reserved

About Trustlook Blockchain Labs

Trustlook Blockchain Labs is a leading blockchain security team with a goal of security
and vulnerability research on current blockchain ecosystems by offering
industry-leading smart contracts auditing services. Please contact us for more
information at (https://www.trustlook.com/services/smart.html) or Email
(bd@trustlook.com)

The Trustlook blockchain laboratory has established a complete system test
environment and methods.

Black-box Testing The tester has no knowledge of the system being
attacked. The goal is to simulate an external hacking or
cyber warfare attack.

White-box Testing Based on the level of the source code, test the control
flow, data flow, nodes, SDK etc. Try to find out the
vulnerabilities and bugs.

Gray-box Testing Use Trustlook customized script tools to do the security
testing of code modules, search for the defects if any
due to improper structure or improper usage of
applications.

@ Copyright 2021 Trustlook - All rights reserved

https://www.trustlook.com/services/smart.html
mailto:bd@trustlook.com

Introduction

By reviewing the implementation of MaxiDao’s smart contracts, this audit report has
been prepared to discover potential issues and vulnerabilities of their source code. We
outline in the report about our approach to evaluate the potential security risks. Advice
to further improve the quality of security or performance is also given in the report.

About MaxiDao

MaxiDAO is a Decentralized Autonomous Organization built by and for crypto miners and
pools. It started with a decentralized mining pool protocol on the Chia blockchain and built
cross-chain bridges of Chia to the DeFi ecosystem.

About Methodology

To evaluate the potential vulnerabilities or issues, we go through a checklist of
well-known smart contracts related security issues using automatic verification tools and
manual review. To discover potential logic weaknesses or project specific
implementations, we thoroughly discussed with the team to understand the business
model and reduce the risk of unknown vulnerabilities. For any discovered issue, we
might test it on our private network to reproduce the issue to prove our findings.

The checklist of items is shown in the following table:

Category Type ID Name Description

Coding Specification CS-01 ERC standards The contract is using ERC standards.

CS-02 Compiler Version The compiler version should be specified.

CS-03 Constructor
Mismatch

The constructor syntax is changed with Solidity versions. Need
extra attention to make the constructor function right.

CS-04 Return standard Following the ERC20 specification, the transfer and approve

@ Copyright 2021 Trustlook - All rights reserved

functions should return a bool value, and a return value code
needs to be added.

CS-05 Address(0)
validation

It is recommended to add the verification of
require(_to!=address(0)) to effectively avoid unnecessary loss
caused by user misuse or unknown errors.

CS-06 Unused Variable Unused variables should be removed.

CS-07 Untrusted Libraries The contract should avoid using untrusted libraries, or the
libraries need to be thoroughly audited too.

CS-08 Event Standard Define and use Event appropriately

CS-09 Safe Transfer Using transfer to send funds instead of send.

CS-10 Gas consumption Optimize the code for better gas consumption.

CS-11 Deprecated uses Avoid using deprecated functions.

CS-12 Sanity Checks Sanity checks when setting key parameters in the system

Coding Security SE-01 Integer overflows Integer overflow or underflow issues.

SE-02 Reentrancy Avoid using calls to trade in smart contracts to avoid reentrancy
vulnerability.

SE-03 Transaction
Ordering
Dependence

Avoid transaction ordering dependence vulnerability.

SE-04 Tx.origin usage Avoid using tx.origin for authentication.

SE-05 Fake recharge The judgment of the balance and the transfer amount needs to
use the “require function”.

SE-06 Replay If the contract involves the demands for entrusted management,
attention should be paid to the non-reusability of verification to avoid
replay attacks.

SE-07 External call
checks

For external contracts, pull instead of push is preferred.

SE-08 Weak random The method of generating random numbers on smart contracts
requires more considerations.

Additional Security AS-01 Access control Well defined access control for functions.

AS-02 Authentication
management

The authentication management is well defined.

AS-03 Semantic
Consistency

Semantics are consistent.

AS-04 Functionality
checks

The functionality is well implemented.

@ Copyright 2021 Trustlook - All rights reserved

AS-05 Business logic
review

The business model logic is implemented correctly.

The severity level of the issues are described in the following table:

Severity Description

Critical The issue will result in asset loss or data manipulations.

High The issue will seriously affect the correctness of the
business model.

Medium The issue is still important to fix but not practical to
exploit.

Low The issue is mostly related to outedate, unused code
snippets.

Informational This issue is mostly related to code style, informational
statements and is not mandatory to be fixed.

@ Copyright 2021 Trustlook - All rights reserved

Audit Results

Here are the audit results of the smart contracts. The new release of the smart contracts
add more features to restrict the privilege of the owner to reduce the risk of private key
loss or hacking events.

Scope

Following files have been scanned by our internal audit tool and manually reviewed and tested
by our team:

File names Sha1

Bridge.sol 632facd15d4de2ce2d6834f854961aac176a9914

Controller.sol b3452e3e821a522fe4bcad9f7a8695f23db7732a

Members.sol 251c62a43a6cd28ad2017e7bedc25a8a48e2a459

WXCH.sol e494bc1c8791cb8b30086eae4583f919257b3a81

Summary

Issue ID Severity Location Type ID Status

TBL_SCA_001 Info Bridge.sol:569 CS-10 open

TBL_SCA_002 Info Bridge.sol:601 CS-10 open

TBL_SCA_003 Medium WXCH.sol:653 AS-01 closed

@ Copyright 2021 Trustlook - All rights reserved

@ Copyright 2021 Trustlook - All rights reserved

Details

• ID: TBL_SCA-001

• Severity: Informational

• Type: CS-10 (Gas consumption)

• Description:

The validation of “broker“ to be address(0) or not is not necessary, since the later
validation “controller.isBroker(broker)” will cover this validation. Because there is already
validation of broker before adding into the brokers list:

function addBroker(address broker) external override onlyOwner returns (bool) {
require(broker != address(0), "invalid broker address");
require(brokers.add(broker), "broker add failed");

emit BrokerAdd(broker);
return true;

}

• Remediation:

@ Copyright 2021 Trustlook - All rights reserved

• ID: TBL_SCA-002

• Severity: Informational

• Type: CS-10 (Gas consumption)

• Description:

The parameter depositAddress is not necessary since it must be the value of
“custodianDepositAddress[msg.sender])” when there is a validation of the value at line 608.

• Remediation:

@ Copyright 2021 Trustlook - All rights reserved

• ID: TBL_SCA-003

• Severity: Medium

• Type: AS-01 (Access Control)

• Description:

Function burn() is designed to be called only by smart contract Controller, therefore, the
modifier onlyOwner is needed.

• Remediation:

The team has fixed this issue in a new release.

@ Copyright 2021 Trustlook - All rights reserved

